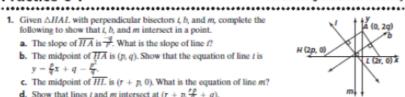
Practice 6-7

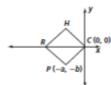
Proofs Using Coordinate Geometry

- 1. Given $\triangle HAL$ with perpendicular bisectors t, b, and m, complete the following to show that i, b, and m intersect in a point.
 - **a.** The slope of \overline{HA} is $\frac{-q}{P}$. What is the slope of line t?
 - **b.** The midpoint of \overline{HA} is (p, q). Show that the equation of line t is $y = \frac{p}{q}x + q - \frac{p^2}{q}.$
 - c. The midpoint of \overline{HL} is (r + p, 0). What is the equation of line m?
 - **d.** Show that lines t and m intersect at $(r + p, \frac{rp}{q} + q)$.
 - **e.** The slope of \overline{AL} is $\frac{-q}{r}$. What is the slope of line b?
 - **f.** What is the midpoint of \overline{AL} ?
 - g. Show that the equation of line b is $y \frac{\ell}{q}x + q \frac{\ell^2}{q}$.
 - **h.** Show that lines b and m intersect at $(r + p, \frac{rp}{q} + q)$.
 - i. Give the coordinates for the point of intersection of t, b, and m.



Complete Exercises 2 and 3 without using any new variables.

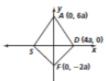
- 2. RHCP is a rhombus.
 - a. Determine the coordinates of R.
 - b. Determine the coordinates of H.
 - c. Find the midpoint of \overline{RH} .
 - **d.** Find the slope of \overline{RH} .



3. ADFS is a kite.

Pearson Education, Inc. All rights reserved.

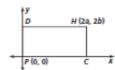
- a. Determine the coordinates of S.
- **b.** Find the midpoint of \overline{AS} .
- c. Find the slope of \overline{AS} .
- **d.** Find the midpoint of \overline{DF} .
- Find the slope of DF.



 Complete the coordinates for rectangle DHCP. Then use coordinate geometry to prove the following statement: The diagonals of a rectangle are congruent (Theorem 6-11).

Given: rectangle DHCP

Prove: $\overline{DC} \simeq \overline{HP}$



Geometry Chapter 6 Lesson 6-7 Practice

Practice 6-7

1a.
$$\frac{p}{q}$$
 1b. $y = mx + b$; $q = \frac{p}{q}(p) + b$; $b + q - \frac{p^2}{q}$; $y = \frac{p}{q}x + q - \frac{p^2}{q}$ 1c. $x = r + p$ 1d. $y = \frac{p}{q}(r + p) + q - \frac{p^2}{q}$; $y = \frac{rp}{q} + \frac{p^2}{q} + q - \frac{p^2}{q}$; $y = \frac{rp}{q} + q$; intersection at $(r + p, \frac{rp}{q} + q)$ 1e. $\frac{r}{q}$ 1f. (r, q) 1g. $y = mx + b$; $q = \frac{r}{q}(r) + b$; $b = q - \frac{r^2}{q}$; $y = \frac{r}{q}x + q - \frac{r^2}{q}$ 1h. $y = \frac{r}{q}(r + p) + q - \frac{r^2}{q}$; $y = \frac{r^2}{q} + \frac{rp}{q} + q - \frac{r^2}{q}$; $y = \frac{rp}{q} + q$; intersection at $(r + p, \frac{rp}{q} + q)$ 1i. $(r + p, \frac{rp}{q} + q)$ 2a. $(-2a, 0)$ 2b. $(-a, b)$ 2c. $(-\frac{3a}{2}, \frac{b}{2})$ 2d. $\frac{b}{a}$ 3a. $(-4a, 0)$ 3b. $(-2a, 3a)$ 3c. $\frac{3}{2}$ 3d. $(2a, -a)$ 3e. $\frac{1}{2}$ 4. The coordinates for D are $(0, 2b)$. The

lengths of \overline{DC} and \overline{HP} can be determined: $DC = \sqrt{(2a - 0)^2 + (0 - 2b)^2} = \sqrt{4a^2 + 4b^2};$ $HP = \sqrt{(0 - 2a)^2 + (0 - 2b)^2} = \sqrt{4a^2 + 4b^2};$ DC = HP, so $\overline{DC} \cong \overline{HP}$.

coordinates for C are (2a, 0). Given these coordinates, the